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Abstract
A hierarchy of equations for equilibrium reduced density matrices obtained
earlier is used to consider systems of spinless bosons bound by forces of gravity
alone. The systems are assumed to be at absolute zero of temperature under
conditions of Bose condensation. In this case, a peculiar interplay of quantum
effects and of very weak gravitational interaction between microparticles
occurs. As a result, there can form spatially bounded equilibrium structures
macroscopic in size, both immobile and rotating. The size of a structure is
inversely related to the number of particles in the structure. When the number
of particles is relatively small the size can be enormous, whereas if this number
equals Avogadro’s number the radius of the structure is about 30 cm in the case
that the structure consists of hydrogen atoms. The rotating objects have the
form of rings and exhibit superfluidity. An atmosphere that can be captured by
tiny celestial bodies from the ambient medium is considered too. The thickness
of the atmosphere decreases as its mass increases. If short-range intermolecular
forces are taken into account, the results obtained hold for excited states whose
lifetime can however be very long. The results of the paper can be utilized for
explaining the first stage of formation of celestial bodies from interstellar and
even intergalactic gases.

PACS numbers: 05.30.Jp, 67.40.Db, 95.30.−k

1. Introduction

Gravitational interaction between atomic particles is extremely weak and is usually
disregarded. At the same time, if forces of gravity alone acted between the particles, one
would obtain rather curious results. In classical statistical mechanics, at absolute zero of
temperature (T = 0) the particles would coalesce into a point, if attractive forces alone were
involved, regardless of the strength of the attraction. In quantum mechanics, the particles
cannot coalesce because of the uncertainty principle. If one takes, for example, the Bohr
radius a = h̄2/(me2) and replaces e2 by Gm2 (G is the gravitation constant and m is the particle
mass) one will obtain aG = h̄2/(Gm3) ∼ 1019 km, once the mass of a hydrogen atom is put
for m. We see a drastic difference between the classical and quantum cases: aG = 0 if h̄ = 0,

0305-4470/05/296431+16$30.00 © 2005 IOP Publishing Ltd Printed in the UK 6431

http://dx.doi.org/10.1088/0305-4470/38/29/001
http://stacks.iop.org/ja/38/6431


6432 V A Golovko

whereas aG ∼ 1019 km in the quantum case. The latter value of aG is, of course, relevant to
a system consisting of only two atoms. The aim in this paper is to investigate the size and
structure of quantum systems containing a great number of N particles that interact via the
forces of gravity (the T = 0 case is implied). We shall see that the size of the systems that can
be immobile or rotating depends essentially upon N. For example, a mole of atomic hydrogen
held solely by gravitational forces of its own should occupy a sphere of about 30 cm in radius
instead of 1019 km. It is to be added that in numerous statistical studies on gravitating systems
(for a review see [1]) only the classical case is considered for the most part.

The question arises as to the conditions under which the gravitational interaction between
atoms or molecules can play a leading role (for brevity, we shall speak of atoms). Familiar
short-range interatomic forces can be neglected as compared to the long-range gravitational
forces, if distances between the atoms are sufficiently great, that is to say, if the density of a
gas is sufficiently low. Among the former forces, the longest range is characteristic of the van
der Waals forces whose potential in the case of two hydrogen atoms is of the form [2, 3]

KW(r) = −6.50e2a5
B

r6
, (1.1)

where aB = h̄2/(me e2) is the ordinary Bohr radius and me is the electron mass. If one computes
the force corresponding to (1.1) and the one corresponding to the Newtonian potential

K(r) = −Gm2

r
, (1.2)

one will see that the forces become equal to each other at r = r0 and the relevant density ρ0 is

ρ0 = 1

r3
0

= 1

a3
B

(
Gm2

39.0e2

)3/5

. (1.3)

This gives r0 = 0.18 cm and ρ0 = 166 atoms/cm3 for hydrogen. By virtue of the rapid decrease
of KW(r) as r increases, it is safe to say that when the average density of a hydrogen gas is
less than 102 atoms/cm3 there remains only the gravitational interaction between the atoms. In
the case of other atoms or molecules, approximate formulae and experimental data presented
in [3] enable one to estimate the relevant value of r0 and ρ0 in like fashion. It must be stressed
that, even if ρ >ρ0, the influence of the gravitational interaction may still be essential because,
in the case of short-range forces, only a limited number of particles act on a given particle;
while in the case of long-range forces a great number of particles act on the same particle.

In our galaxy, the density of interstellar neutral hydrogen is about 1 atom/cm3 dropping to
several hundredths of atoms/cm3 at the periphery. The intergalactic gas and the substance of
some extragalactic gaseous nebulae have densities that are significantly lower. Hence, in all
these cases the atoms interact with one another essentially via gravity. It should be emphasized
that we imply those regions of outer space where the temperature is close to zero because the
results of the present study are applicable directly only to a gas at T = 0.

Seeing that the interstellar gas consists, for the most part, of atomic hydrogen whereas
hydrogen atoms in the ground state are spinless bosons, in this paper we make use of the
approach developed in [4] just for quantum systems of spinless bosons at thermodynamic
equilibrium. At low temperatures, a phenomenon analogous to the Bose condensation in
an ideal gas should happen. Modification of the results of [4] with account taken of the
phenomenon was performed in [5] whose equations form the basis of the present study. It
is worthy of remark that in [6, 7] the methods of [4, 5] are extended to the case of non-zero
spin particles, including fermions. As long as the gravitational fields are assumed to be weak
in this paper, resorting to the general theory of relativity is not required; so we shall restrict
ourselves to Newton’s theory of gravity.
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2. Basic equations

The approach developed in [4, 5] makes use of s-particle reduced density matrices Rs(xs , x′
s)

with s = 1, 2, . . . , N where xs denotes a set of coordinates r1, r2, . . . , rs and N is the total
number of particles in the system. At thermodynamic equilibrium, a hierarchy of equations
can be obtained, which contains only diagonal elements of the density matrices

ρs(xs) = Rs(xs , xs). (2.1)

If Bose particles are dealt with, at low temperatures a number of particles prove to be in a
special state and form a condensate. As long as in this paper the T = 0 case is considered, we
shall presume that the condensate comprises all particles so that the density matrices Rs(xs , x′

s)

coincide with the condensate parts R(c)
s (xs , x′

s), while the normal parts R(n)
s (xs , x′

s) are null.
Taking R(c)

s (xs , x′
s) of [5] we have, therefore,

Rs(xs , x′
s) = R(c)

s (xs , x′
s) = ϕs(xs)ϕ

∗
s (x

′
s), (2.2)

the functions ϕs(xs) being found from the equations

h̄2

2m

s∑
j=1

∇2
j ϕs(xs) + [ε(s) − Us(xs)]ϕs(xs) = 0, (2.3)

where m is the particle mass. The effective potentials Us(xs) are determined by the equations

ρs(xs)∇1Us(xs) = ρs(xs)∇1


 s∑

j=2

K(|r1 − rj |) + V (e)(r1)




+
∫

ρs+1(xs+1)∇1K(|r1 − rs+1|) drs+1, (2.4)

in which K(|ri − rj |) is a two-body potential that describes interaction between the particles,
and V (e)(r) is an external potential. Inasmuch as we have now, because of (2.1) and (2.2), that

ρs(xs) = |ϕs(xs)|2, (2.5)

equations (2.3) and (2.4) represent a hierarchy of equations (s = 1, 2, . . .) in which only the
diagonal elements ρs(xs) of the density matrices figure rather than the full density matrices.

The quantities ε(s) of (2.3) with a dimension of energy are specified by the requirement
that ρs(xs) must be interrelated by

(N − s + 1)ρs−1(xs−1) =
∫

ρs(xs) drs . (2.6)

In [5] it was shown that, in the case of uniform media, this last interrelation enables one to
express the quantities ε(s) in terms of ε(1) alone. In what follows, only ε(1) is needed.

In this paper, we shall investigate the number density ρ1(r1) and we shall omit the subscript
1 of ρ1, r1, ϕ1, U1 and ε(1). In this case equation (2.3) with s = 1 takes the form

h̄2

2m
∇2ϕ(r) + [ε − U(r)]ϕ(r) = 0, (2.7)

whereas in the absence of the external field1 equation (2.4) yields

ρ(r)∇U(r) =
∫

ρ2(r, r′)∇K(|r − r′|) dr′, (2.8)

1 If the object under study is relatively small in size, the gravitational potential due to the galaxy can be considered
to be a constant within the object. The constant can be incorporated in ε, which is implied hereinafter.
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where ρ2(r, r′) is a pair density matrix. From (2.5) it follows that

ρ(r) = |ϕ(r)|2, (2.9)

and, besides, the density ρ(r) should satisfy the normalization condition [4]∫
V

ρ(r) dr = N, (2.10)

in which the integration is carried out over the volume V occupied by the system (this is
implied for all space integrals throughout the paper).

In studies of dilute systems in which long-range forces act, good use is made of Vlasov’s
approximation for the pair distribution function [8]. In our case the approximation implies
that

ρ2(r1, r2) = ρ(r1)ρ(r2). (2.11)

Once (2.11) is inserted into equation (2.8), the equation is readily integrated to give

U(r) =
∫

K(|r − r′|)ρ(r′) dr′, (2.12)

where the integration constant is chosen such that U(r) → 0 as |r| → ∞.
If solely forces of gravity act in the system, then the potential K(|r − r′|) is given by (1.2).

In this event equation (2.12) can be recast in a differential form, if use is made of the Laplacian
operator ∇2. With account taken of (2.9) the equation assumes the form

∇2U(r) = 4πGm2|ϕ(r)|2. (2.13)

Equations (2.7) and (2.13), together with (2.9) and (2.10), constitute the equations that
form the basis for the following investigation. It is worth noting that equation (2.7) bears
close resemblance to the Schrödinger equation, if one regards ϕ(r) as a wavefunction and
determines the potential U(r) in a self-consistent way according to (2.13). This resemblance
is, however, purely outward, though useful for qualitative analysis. In actual fact, the genuine
wavefunction is �(r1, . . . , rN , t). Equation (2.7) results from integrating the relevant density
matrix over all variables except r1; and the equation describes only a state of thermodynamic
equilibrium, provided fluctuations that depend on time t can be disregarded [4, 5]. In particular,
the quantity ε in (2.7) does not represent the energy of a particle. The energy E of the system
is given by equation (3.6) of [4] that can, on account of (2.2), (2.11) and (2.12), be reduced to

E = − h̄2

2m

∫
ϕ∗(r)∇2ϕ(r) dr +

1

2

∫
U(r)ρ(r) dr. (2.14)

Substituting (2.7) and making use of (2.10) leads to

E = Nε − 1

2

∫
U(r)|ϕ(r)|2 dr. (2.15)

In what follows it is convenient to employ dimensionless quantities. We introduce a
parameter l0 with a dimension of length and a parameter ϕ0 that defines the dimension of ϕ,
upon writing r = l0r̃ and ϕ = ϕ0 f with dimensionless quantities r̃ and f . Equation (2.7)
acquires now the form

∇̃2f (r̃) + [ε̃ − u(r̃)]f (r̃) = 0, (2.16)

where ∇̃ = ∂/∂ r̃, and the dimensionless ε̃ and u are defined by

ε = h̄2

2ml2
0

ε̃, U = h̄2

2ml2
0

u. (2.17)
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Equation (2.13) transforms to the following dimensionless form:

∇̃2u(r̃) = 4π |f (r̃)|2 (2.18)

and gives a relation between ϕ0 and l0:

ϕ2
0 = h̄2

2Gm3l4
0

. (2.19)

If one links ϕ0 and l0 by another relation, namely, l3
0ϕ

2
0 = N , equation (2.10) becomes∫

Ṽ

|f (r̃)|2 dr̃ = 1. (2.20)

On account of the second relation between ϕ0 and l0, from (2.19) one has finally

l0 = h̄2

2Gm3N
= h̄2

2Gm2M
, (2.21)

where the mass of the system M = Nm has been introduced. The energy of the system of
(2.15) can also be expressed in terms of a dimensionless quantity Ẽ:

E = 2G2m5N3

h̄2 Ẽ, Ẽ = ε̃ − 1

2

∫
u(r̃)|f (r̃)|2 dr̃. (2.22)

It is instructive to recast (2.21) in another form upon introducing the Compton wavelength
of the system �C = h̄/Mc and the Planck mass mP = √

h̄c/G ≈ 2.2 × 10−5 g:

l0 = 1

2

(
mP

m

)2

�C. (2.23)

The Compton wavelength for a macroscopic system is extremely small. Only if the constituents
of the system are microscopic particles, does the factor (mP/m)2 lead to a reasonable value of
l0. For example, in the case of hydrogen mP/m ∼ 1019. Note also that, if N is small, the length
l0 is of the same order of magnitude as aG discussed in introduction.

In the next section we shall see that in the case of spherical structures their radius is of the
order R̃ = 10, which amounts to saying that in ordinary units their radius will be of the order
R = 10l0. As a concrete example, we shall assume that the system is composed of hydrogen
atoms (see introduction). Taking the mass of a hydrogen atom for m in (2.21), we get the
following estimate for the radius of the system:

R ≈ 1.78

N
1023 (in metres). (2.24)

It is reasonable to believe that statistical laws manifest themselves in systems with a
number of particles of order N = 100 and more [9]. Setting N = 100 in (2.24), one gets a huge
size of order 105 light years, which is comparable with the size of our galaxy. If one takes
the radius of our solar system (the mean distance between the Sun and Pluto) as R in (2.24),
one will see that a system with such dimensions will be made up of about 3 × 1010 hydrogen
atoms.

It is informative to estimate the average number density ρ̄ for the systems in question.
Since the volume of the system is V = 4πR3/3, equation (2.24) yields

ρ̄ = N

V
= 4.25 × 10−71N4

(
1

m3

)
. (2.25)

As mentioned in introduction, in our galaxy the density of interstellar neutral hydrogen is
about 1 atom/cm3 dropping to several hundredths of atoms/cm3 at the periphery. Substituting
these values into (2.25) we see that a bound system whose average density is within this range
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will contain about 1019 atoms or slightly less, while its radius will be of the order 10 km or
somewhat more, according to (2.24). In the above example of the solar system-sized object,
the average density is as low as 1 atom per 3 × 1019 km3. This situation may occur only in
a very deserted region of intergalactic space; in which case the system composed of about
3 × 1010 particles will occupy a vast volume.

Yet another example is worthy of consideration. Let us calculate the radius of a sphere
in which one mole of atomic hydrogen (the number of atoms equal to Avogadro’s number)
can be kept by its own forces of gravity. Equation (2.24) gives R ≈ 30 cm in this case. This
example is also instructive because it shows that, notwithstanding the extreme weakness of the
gravitational interaction between the hydrogen atoms, bound objects of small size may form,
even if the familiar interatomic forces are discarded. According to (2.21) the size of an object
is rather sensitive to the mass of its constituents. For example, a mole of molecular oxygen
held by the forces of gravity alone would occupy a sphere of about 10−3 cm in radius.

3. Spherically symmetric structures

We turn now to analysis and solution of equations (2.16) and (2.18). In order to simplify
formulae we shall omit the tilde over r and ε, keeping in mind that the functions f and u
depend in fact upon r̃ and ε̃. We start with spherically symmetric solutions when f is real
valued. Upon writing the Laplacian in spherical coordinates, from (2.16) and (2.18) one has

d2f

dr2
+

2

r

df

dr
+ (ε − u)f = 0,

d2u

dr2
+

2

r

du

dr
− 4πf 2 = 0. (3.1)

As long as no boundary is implied, the integration in (2.20) is to be extended over all space:

4π

∫ ∞

0
r2f 2(r) dr = 1. (3.2)

The nonlinear equations of (3.1) do not lend themselves to solving analytically, and
therefore recourse to numerical methods is needed. It is worthwhile to first perform a
preliminary analysis of the equations. It is convenient to incorporate the constant ε into
u(r) by introducing a new function w(r) = u(r) − ε. Then the equations of (3.1) acquire the
form

d2f

dr2
+

2

r

df

dr
− wf = 0,

d2w

dr2
+

2

r

dw

dr
− 4πf 2 = 0. (3.3)

When carrying out numerical calculation, the matter is complicated by the fact that one
has to take account of the condition (3.2), which is not trivial because of the nonlinearity of
the equations. One can however circumvent the complication, owing to the following property
of the equations of (3.3) that can readily be checked. If the equations have a solution [f (r),
w(r)], then they will admit another solution of the form

fc = 1

C2
f

( r

C

)
, wc = 1

C2
w

( r

C

)
(3.4)

with an arbitrary constant C, while the integral of the type that figures in (3.2) will be divided
by C if the new function fc(r) is substituted. For this reason, one may look for a solution
of the equations without taking care to satisfy (3.2). Upon finding the solution, one ought to
calculate the integral on the left of (3.2) and to carry out the transformation of (3.4), taking the
calculated value of the integral for C. The new function fc will obey the condition of (3.2).

Let us find the number of arbitrary constants that determine a solution to the equations of
(3.3) that is regular at r = 0. To this end, one should seek the solution in terms of series in
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Figure 1. Function f (r) for spherically symmetric solutions. The numeration of the solutions
corresponds to table 1.

Table 1. Parameters of the spherically symmetric solutions.

Solution f (0) u(0) ε̃ Ẽ R̃

1 2.345 × 10−2 −0.1577 −8.138 × 10−2 −2.713 × 10−2 10.4
2 4.741 × 10−3 −3.573 × 10−2 −1.540 × 10−2 −5.133 × 10−3 70.8
3 1.980 × 10−3 −1.570 × 10−2 −6.263 × 10−3 −2.088 × 10−3 174.2

powers of r. The series will contain only even powers of r, and one will see that all terms of
the series will be expressed uniquely via f (0) and u(0), which amounts to saying that there
are two arbitrary constants, while df/dr = dw/dr = 0 at r = 0.

For numerical calculation, the equations of (3.3) were rewritten in the form of a set of four
differential equations of first order; and the set was solved with the help of the well-known
Runge–Kutta method. Owing to the property of (3.4), one of the two arbitrary constants may
be chosen at will. In the course of the calculation, we set f (0) = 1 (the sign of f plays no
role for the equations), and by the trial-and-error method we looked for a value of w(0) such
that f (r) → 0 as r → ∞. The solution obtained was transformed, on account of (3.4), so
that (3.2) was fulfilled. Reverting to the equations of (3.1), the value of ε can be found with
use made of the fact that w(r) → −ε as r → ∞, since u(r) → 0 in this limit (more precisely
u(r) → −1/r if (3.2) holds). The energy of the structure Ẽ can be computed with the help of
(2.22). However, when no spatial boundaries are implied, a simple relation Ẽ = ε̃/3 holds,
which can be proven upon reducing (2.22) with the use made of (2.16) and (2.18).

The equations of (3.1) have different solutions, and the parameters of the first three of
them are listed in table 1. Solution 1 has no zeros, solution 2 has one zero, solution 3 has
two zeros (figure 1); there are solutions with three zeros and more. Since the density ρ(r) =
f 2(r), solution 1 corresponds to a sphere, solution 2 corresponds to a sphere surrounded
by a spherical layer; in the case of other solutions there is a sphere with several spherical
layers.

The equilibrium state of the system under study is that whose energy is minimal.
According to table 1, this is the state described by solution 1. Having regard to (2.22)
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the energy of this last state expressed in ordinary units is

E = −G2m5N3

7.37h̄2 . (3.5)

This formula agrees with the estimate of the ground-state energy of a gravitating system given
in [1] (the numerical coefficient of [1] is ≈1/8 instead of 1/7.37 in (3.5)).

The radius of the structure may be conventionally defined as the distance from the centre
(or from the last maximum) to the point where the density ρ(r) diminishes by a factor of 10.
The radii of the structures R̃ are listed in table 1 as well. The radius relevant to solution 1 was
utilized for the estimate of (2.24).

4. Rotating structures

If particles had a nonzero total angular momentum, then the bound system that arises should
also possess an angular momentum, that is, the system should rotate. To begin with, let us
deduce a formula for calculation of the angular momentum of a system in the framework of
the approach used. If the system is described by a wavefunction �(r1, . . . , rN , t) ≡ �(xN, t),
its angular momentum L can be computed using the quantum mechanical formula [2]

L = −ih̄
∫

�∗(xN, t)

N∑
j=1

[rj∇j ]�(xN, t) dr1 · · · drN . (4.1)

Upon integrating over all variables except rj and making use of the definition of reduced
density matrices, equation (4.1) can be transformed to the form (cf equation (3.6) of [4] for
the energy)

L = −ih̄
∫

{[r∇]R1(r, r′)}r′=r dr. (4.2)

We assume that the system rotates around the z-axis and introduce spherical coordinates
r, θ , ψ (we denote the second angle by ψ to avoid confusion with the function ϕ). In this
instance, only the component Lz will be different from zero and equation (4.2) yields

Lz = −ih̄
∫ [

∂

∂ψ
R1(r, r′)

]
r′=r

dr. (4.3)

Hence it follows that Lz 
= 0, only if the function ϕ(r) that determines R1 depends upon ψ , and
moreover ϕ(r) is to be complex to give a real Lz. The density ρ(r) of (2.9) will be independent
of the angular coordinate ψ and the symmetry will be axial, if ϕ(r) is of the form

ϕ(r) = ϕ(r, θ) eilψ , (4.4)

in which l is an integer in order that ϕ(r) be single valued. Placing (2.2) with (4.4) in (4.3)
and recalling the normalization of (2.10), we find the angular momentum of the system:

Lz = h̄lN = h̄

m
lM. (4.5)

First we take the simplest case l = 1. If we substitute (4.4) into the dimensionless
equations of (2.16) and (2.18), drop the tilde and introduce f (r, θ) = ϕ(r, θ)/ϕ0, we are
led to

1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
− f

r2 sin2 θ
+ [ε − u(r, θ)]f = 0, (4.6)

1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 4πf 2(r, θ). (4.7)
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Figure 2. Density ρ(r, θ) = f 2(r, θ) for a rotating structure. Curve 1: the r-dependence at θ =
π/2 (z = 0), curve 2: the z-dependence along a line parallel with the z-axis and passing through
the point of the maximum density.

It can be shown that the solution for f regular at θ = 0 is of the form

f (r, θ) = r sin θ g(r, θ), (4.8)

in which g(r, θ) is a regular function. From this it follows that the density f 2(r, θ) vanishes at
θ = 0, i.e., on the z-axis. Therefore, the equilibrium rotating structure has the form of a ring.

As the function f (r, θ) is not spherically symmetrical, neither is the potential u(r, θ). For
this reason, the function f (r, θ) does not break up into two factors, one of which depends
on r while the other on θ , as happens with the solution of the Schrödinger equation in the
case of a spherically symmetric potential. This considerably complicates numerical solution
of equations (4.6), (4.7). The method employed for solving the equations is described in the
appendix.

With this method, we succeeded only in obtaining a solution in which the function g(r, θ)

of (4.8) has no zeros. However, other solutions, if any, should correspond to a higher energy
as in section 3, in which case it is precisely the solution obtained that describes the equilibrium
for l = 1. The calculated energy (Ẽ = ε̃/3 = −9.514 × 10−3) is higher than for solution 1
of section 3 but it is less than for solution 2 (see table 1). Such an object, however, cannot
evolve on its own into an immobile object relevant to solution 1, owing to the conservation of
angular momentum. The plot of the density f 2(r, θ) as a function of r in the equatorial plane
is shown by curve 1 in figure 2. The behaviour of the density perpendicularly to the equatorial
plane beginning at the point of the maximum is represented by curve 2 in the same figure. The
spinning structure is a rather thick ring that has an inner radius of 3.3, an outer radius of 36.0
and a height of 42.6, if one defines the boundary as in section 3.

To elucidate the character of the rotation it makes sense to find the number density of
current j (the number of particles crossing, on average, unit area normal to the vector j per
unit time). In the case of one particle the probability current density is given by [2]

i = ih̄

2m
(�∇�∗ − �∗∇�). (4.9)

Summing up over all particles one obtains, by analogy with (4.2), that

j = ih̄

2m

[
∂

∂r′ R1(r, r′) − ∂

∂r
R1(r, r′)

]
r′=r

. (4.10)
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When (2.2) and (4.4) are inserted into (4.10), one sees that only the component of the vector
j tangent to the circumferences of revolution is nonzero, which is obvious in advance. On
account of (4.8) the magnitude of the current density (in ordinary units) is found to be

j = h̄

m
lr sin θ g2(r, θ). (4.11)

It is more illuminating to introduce a mean velocity of particles v on a base of the
hydrodynamic relation j = ρv. In the present case ρ = ϕ2(r, θ), and therefore (4.11) gives

|v| ≡ v = lh̄

mr sin θ
. (4.12)

The divergence of v as θ → 0 is fictitious because there are no particles at points where θ =
0 according to (4.8), and j = 0 there. From (4.12) we see that the velocity decreases as the
distance from the rotation axis r sin θ increases. Therefore, the structure does not rotate as a
solid since in the latter case the velocity should increase with the distance from the axis.

Here in fact we meet with an example of superfluidity. Rotating layers of the gas have
different velocities without any dissipation of energy since the energy is stationary. This
should not cause surprise, for the gas is in a state of Bose condensation. In [5] it was stressed
that the phase with a condensate can be either superfluid or nonsuperfluid. In section 3 we had
a condensate phase without superfluidity. The present condensate phase is superfluid.

We have considered in detail the case where l = 1 in (4.4). We discuss now in brief the
case l > 1. In this case, one has f (r, θ) = rl sinl θ g(r, θ) instead of (4.8). The radius of the
ring grows with increasing l. The angular momentum increases as well according to (4.5).

5. Captured atmosphere

In order to consider the atmosphere of a celestial body composed of actual particles, it is
necessary to take into account both gravitational and ordinary intermolecular forces. It is
conceivable however that a solid devoid initially of atmosphere captures some amount of
interstellar particles in its gravitational pull. If distances between the particles are sufficiently
great (the relevant criterion is given in introduction), the particles will interact only via the
forces of gravity. Such a captured atmosphere will be considered in this section.

The gravitational field of the solid body plays the role of an external field V (e)(r) for the
atmosphere’s particles. In view of this, equation (2.4) with s = 1 yields now, instead of (2.12),

U(r) = V (e)(r) +
∫

K(|r − r′|)ρ(r′) dr′. (5.1)

If the coordinate origin is placed at the centre of the body presumed to be spherical in shape,
the relevant external potential is V (e)(r) = −GmM0/|r| where M0 is the mass of the body.
If we apply the Laplacian to both sides of (5.1), we arrive again at equation (2.13) since
∇2V (e)(r) = 0 in the present case. Thus we have the same basic equations as before, namely,
(2.7) and (2.13).

We introduce now dimensionless quantities. In the present problem there exists a natural
parameter with a dimension of length, namely, the radius R0 of the central body. Upon writing
r = R0r̃ and ϕ = ϕ0 f , we obtain equation (2.16) but now instead of (2.17) we have

ε = h̄2

2mR2
0

ε̃, U = h̄2

2mR2
0

u. (5.2)

Equation (2.13) is brought to the form of (2.18) with

ϕ2
0 = h̄2

2Gm3R4
0

. (5.3)
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Here R0 is a given quantity, and thereupon ϕ0 is defined unequivocally in contradistinction to
(2.19) where the quantity l0 was not fixed and we utilized freedom in choosing l0 in order to
reduce the normalization condition of (2.10) to the form of (2.20). Now we cannot reduce
(2.10) to that form. If account is taken of the fact that now the integration in (2.10) is to be
extended over the volume occupied by the atmosphere, which implies that r � R0 (or r̃ � 1),
equation (2.10) assumes the form (hereinafter we omit the tilde over r)

I ≡
∫

r�1
ρ(r) dr ≡ 4π

∫ ∞

1
f 2(r)r2 dr = µ

M

M0
. (5.4)

Here we have introduced the mass of the atmosphere M = mN and a dimensionless quantity

µ = 2Gm2

h̄2 M0R0 = 2
εG

εr

(
R0

λC

)2

, (5.5)

wherein εG = GM0m/R0 is the magnitude of the gravitational energy of a particle at the surface
of the body, εr = mc2 is the relativistic energy of the particle and λC = h̄/mc is its Compton
wavelength. The second expression for µ may be helpful for comparing physical scales.

We shall consider a non-rotating atmosphere, which is equivalent to saying that we shall
look for spherically symmetric and real solutions. In this case equations (2.16) and (2.18) take
the form of (3.1). Equation (5.1) can be rewritten in the following dimensionless form:

u(r) = −µ

r
− 4π

r

∫ r

1
r ′2f 2(r ′) dr ′ − 4π

∫ ∞

r

r ′f 2(r ′) dr ′. (5.6)

One may verify directly that this expression satisfies the second equation of (3.1).
Differentiating (5.6) and putting r = 1 yields

du

dr

∣∣∣∣
r=1

= µ. (5.7)

This provides a boundary condition for du/dr independent of parameters of the atmosphere.
A general solution to differential equations of the type (3.1) contains four arbitrary

constants. One of them is determined by virtue of (5.7). There remain three constants.
Recall that in the situation considered in section 3 there were two constants characterizing the
solutions of interest. Therefore, in the present problem we need a supplementary condition
that is to be found on physical grounds. For the sake of simplicity we shall confine ourselves
to two limiting cases. In the first of them that can be called the complete non-adhesion of the
atmosphere to the surface of the body, the atmosphere density vanishes at the body’s surface,
that is, f (r) = 0 at r = 1. In the second case that will be referred to as the complete adhesion
of the atmosphere to the surface of the body, the atmosphere density is a maximum at the
body’s surface, that is, df /dr = 0 at r = 1.

In the case µ is great and the atmosphere’s mass is small (M � M0), one can estimate
the thickness of the atmosphere H analytically. The integrals in (5.6) are of the same order of
magnitude as the integral I in (5.4). For this reason, if M � M0, the terms with the integrals
in (5.6) can be neglected in comparison with the first term on the right. Then, if we put r = 1 in
the first equation of (3.1), we shall see that the assumed great value of µ can be compensated
only by ε, that is to say, ε ≈ −µ in this case. On the other hand, if r → ∞, one can drop u and
the term containing 1/r in the same equation. The resulting equation can be solved readily
to yield f ∝ exp(−√−εr) ≈ exp(−√

µr). Hence it follows that the atmosphere’s thickness
may be estimated as H̃ ∼ 1/

√
µ, which gives H ∼ R0/

√
µ in ordinary units.

Seeing that the solution depends essentially upon the parameter µ, it is worthwhile to
analyse its magnitude. We shall assume as before that the system, the atmosphere in the
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Table 2. Parameters of the captured atmosphere in the case of the complete non-adhesion of the
atmosphere to the central body for µ = 1.

f ′(1) u(1) ε̃ I hm fm Ẽ H̃

0.01 −1.005 −0.1261 2.577 × 10−2 1.75 5.03 × 10−3 −6.528 × 10−4 7.20
0.081 58 −1.235 −0.2945 1.000 1.62 3.98 × 10−2 −8.695 × 10−2 5.94
0.1 −1.319 −0.3557 1.303 1.57 4.83 × 10−2 −0.1432 5.65
0.5 −3.447 −1.926 6.774 1.12 0.205 −4.989 3.31
1 −6.205 −4.028 12.27 0.91 0.364 −19.79 2.55
5 −28.02 −21.72 46.88 0.55 1.29 −439.6 1.40

Table 3. Parameters of the captured atmosphere in the case of the complete adhesion of the
atmosphere to the central body for µ = 1.

f (1) u(1) ε̃ I Ẽ H̃

0.01 −1.006 −0.1922 1.726 × 10−2 −5.280 × 10−4 3.63
0.096 59 −1.383 −0.4598 1.000 −0.1255 2.97
0.1 −1.405 −0.4755 1.050 −0.1379 2.95
0.5 −5.193 −3.298 7.263 −9.270 1.56
1 −11.73 −8.543 16.01 −57.16 1.10
5 −101.0 −87.72 119.6 −4870 0.48

present context, is composed of hydrogen atoms. Then (5.5) yields

µ = 0.336
M0R0

g · cm
. (5.8)

From this it is seen that for somewhat large central bodies the magnitude of µ proves to be
very great. For example, in the case of a body akin to the Earth in mass and size, the value of
µ is of the order 1036. With this µ, the atmosphere’s thickness would be H ∼ 6 × 10−10 cm
(at T = 0), which is two orders of magnitude less than atomic sizes. This last result is, of
course, devoid of physical sense. Only values of µ of order unity or less, in which case H
will be sufficiently large, are of physical interest. From (5.8) we see that such values of µ are
characteristic of bodies having a mass of about 1 g and a size of about 1 cm and under.

When solving the equations numerically, it is difficult to prescribe the atmosphere’s mass
M, i.e., to fix a value of the integral I of (5.4) from the outset. For this reason, we prescribed
a value of the derivative f ′(1) in the case of the complete non-adhesion of the atmosphere
to the body’s surface when f (1) = 0, or a value of f (1) in the case of the adhesion when
f ′(1) = 0. The integral I was evaluated afterwards. The procedure of solving the equations
of (3.3) those of (3.1) are transformed to is analogous to the procedure described in section 3.
The boundary condition of (5.7) was used, too. The parameters of the solutions obtained
are presented in tables 2 and 3 for µ = 1. Table 2 contains also values of the altitude hm

above the body‘s surface where the function f (r) reaches a maximum, and its value fm at
the maximum. The thickness of the atmosphere H̃ is defined, by analogy with section 3, as
the altitude where the density f 2(r) decreases by a factor of 10 with respect to the density
at the maximum. The energy of the atmosphere is calculated with the help of formulae,
analogous to (2.22):

E = h̄4

4Gm4R3
0

Ẽ, Ẽ = ε̃I − 1

2

∫
r�1

u(r̃)f 2(r) dr. (5.9)
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Figure 3. Function f (r) for a captured atmosphere at µ = 1 in the case where the mass of
the atmosphere is equal to that of the body (I = 1). Curve 1: the complete non-adhesion of the
atmosphere to the central body, curve 2: the complete adhesion.

The plot of the function f (r) for the I = 1 case is shown in figure 3. It should be mentioned
that there are solutions in which f (r) has zeros at r 
= 1.

Inspecting the tables one sees that the thickness of the atmosphere decreases as its mass
increases (the integral I increases). Therefore, if a solid body captures extra particles in its
atmosphere, the atmosphere thickness diminishes. The values of I presented in the tables show
as well that the body is capable of capturing an atmosphere whose mass is many times the
mass of the body. It is worth adding that, as the atmosphere’s mass increases, the energy of the
atmosphere decreases steeply, which amounts to saying that it is very favourable energetically
for the body to augment the mass of its atmosphere.

It should be remarked that the tables were compiled with the sole purpose of demonstrating
clearly the tendencies in mutual variations of different parameters, in the case the forces of
gravity alone act in the atmosphere. Some data may in reality correspond to densities at which
short-range intermolecular forces should be taken into account.

6. Discussion and concluding remarks

The results of this paper show that quantum effects can play a peculiar role in many-body
gravitating systems. Such a role of the quantum effects is due to the fact that the systems
are implied to be at absolute zero of temperature in a state of Bose condensation. In this
case there can exist spatially bounded equilibrium structures both immobile and rotating.
Depending on the number of particles, the dimensions of a structure may be enormous even
on an astronomical scale or relatively small.

If one applies the results obtained in the paper to a system composed of actual atoms (or
molecules), account must be taken of the fact that short-range interatomic forces are present
as well, and the ground (equilibrium at T = 0) state of the system is determined principally by
these forces alone. At the same time, distances between the particles can be so great that the
interatomic forces will play no role, in the case the system is in an excited state. Therefore,
if the systems considered in this paper form (in the situations discussed in introduction), they
will in fact be in excited states. The lifetime of these states may however be very long, due to
the following. In order that a system could pass into the ground state, a sufficient number of
atoms of the system must approach one another simultaneously for distances that are less than
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r0 when the short-range interatomic forces come into play. The probability of such an event is
extremely small, if the mean distance between the particles is such as in the interstellar gas,
let alone the intergalactic gas. A collision of only two atoms may lead solely to formation of
a molecule, owing to exchange forces whose range is shorter than that of the van der Waals
forces [2]. A large amount of interstellar atomic hydrogen indicates that even pair collisions
of atoms are very rare in our galaxy, not to mention triple collisions.

It should be emphasized that the starting equations of (2.7) and (2.8) are valid for any
densities and any interaction, provided the interaction can be described by a two-body potential
K(|r1 − r2|). For this reason, one can elucidate how the leading role switches from the
gravitational interaction to the intermolecular one as the density increases. One can look into
the ground state as well. The problem, however, will be complicated substantially by the fact
that, in the matter of high densities and short-range forces, the approximation of (2.11) fails
and a pair correlation function is to be taken into account in ρ2(r1, r2). In fact, one must solve
the whole hierarchy of equations given by (2.3)–(2.6). The situation is analogous with that
occurring in the case of the classical BBGKY hierarchy [9] (see also [4]).

The results of the paper can be used to explain the first stages of formation of celestial
bodies from interstellar and even intergalactic gases. Amongst a wealth of free atoms in a
galaxy or in intergalactic space, a relatively small number of atoms can find themselves under
conditions permitting the atoms to unite into a bound system. For example, in our galaxy,
interstellar hydrogen atoms may organize themselves into a bound system with a radius of
about 10 km, for which no change in the average density is needed according to section 2. It
is worthy of remark that it is not necessary that the bound system be made up of particles that
are neighbours in space. In this connection the example of Cooper’s pairs in a superconductor
may be cited, where the size of a pair is several orders of magnitude greater than the average
distance between conduction electrons.

The system formed will be in an excited state, and two lines of evolution are possible.
Firstly, the system will pass into the ground state according to the ordinary quantum mechanical
laws, which will be accompanied with decrease in size. This evolution may however be very
slow in view of the long lifetime of the excited state discussed above. The second line of
evolution follows from the results of this paper; namely, the system will capture other particles,
which is not difficult and is beneficial energetically since E ∝ −N3 in view of (3.5). In this
case the size of the system will decrease as well according to (2.24). In either case, as the
density becomes sufficiently high, short-range intermolecular forces come into play. As a
result, the very dilute gas gives rise to a compact body showing a tendency to enhance its
mass. Following stages of evolution are beyond the scope of an equilibrium theory because
the system will begin to heat up, and nonequilibrium processes will come into force.

The above scenario requires a sufficient number of initial particles. According to
section 5, another scenario is possible in the matter of formation of celestial bodies. Minor
bodies the size of small pebbles and even grains of sand can capture interstellar atoms one by
one in their atmosphere. It is interesting to note that if a body of mass 1 g captures a hydrogen
atom the gravitational Bohr radius h̄2/(GM0 m2) will be 6 cm. As was stated in section 5 the
mass of the atmosphere captured may far exceed the mass of the body itself. Again, as the
atmosphere’s mass increases, the dimensions of the atmosphere decrease, and the atmosphere
becomes more and more dense. The subsequent processes will develop in a manner described
above.

From section 4 it follows that the celestial structures formed can rotate. It is quite plausible
that the structures are capable of capturing only particles that meet certain conditions. If this
is the case, the rotating structure will capture particles that have a definite angular momentum
and the angular momentum of the structure will grow in view of (4.5).
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Appendix

Let us first transform equations (4.6) and (4.7) into a form helpful in numerical calculation.
Observing that ε < 0 for bound states implied in the paper, we put ε = −ν2. Instead of (4.6)
it is convenient to resort to equation (2.16) that can be recast as (hereafter we omit the tilde)

∇2f (r) − ν2f (r) = u(r)f (r). (A.1)

With use made of the relevant Green function equation (A.1) can be rewritten in the integral
form:

f (r) = − 1

4π

∫
e−ν|r−r′ |

|r − r′| u(r′)f (r′) dr′. (A.2)

We change the distance scale to r̄ = νr and label functions that depend on r̄ with a bar drawn
over the letter. Substituting (4.4) with l = 1 and taking into account the fact that the function
f (r, θ) = ϕ(r, θ)/ϕ0 must be real yields

f̄ (r̄, θ) = − 1

4πν2

∫
e−|r̄−r̄′|

|r̄ − r̄′| cos(ψ − ψ ′)ū(r̄ ′, θ ′)f̄ (r̄ ′, θ ′) dr̄′. (A.3)

If this equation is multiplied by f̄ (r̄, θ) and integrated over all space, we obtain

ν2 = − 1

4π

∫
e−|r̄−r̄′|

|r̄ − r̄′| cos(ψ − ψ ′)ū(r̄ ′, θ ′)f̄ (r̄ ′, θ ′)f̄ (r̄, θ) dr̄′ dr̄

/∫
f̄ 2(r̄, θ) dr̄. (A.4)

Instead of equation (4.7), directly from (2.12) we have

ū(r̄, θ) = − 1

ν2

∫
f̄ 2(r̄ ′, θ ′)
|r̄ − r̄′| dr̄. (A.5)

In the case of a rotating structure, f̄ (r̄, θ) = r̄ sin θ ḡ(r̄, θ) by (4.8).
These last equations serve as a basis for numerical solution by iteration. Upon starting

from some initial ḡ(r̄, θ) and ν, we find the initial function ū(r̄, θ) by (A.5). We introduce
these quantities into the right-hand side of equations (A.3) and (A.4) and find new ḡ(r̄, θ)

and ν, and so on. The iteration continues until we reach a prescribed number of stable digits
in the functions sought. A transformation analogous with (3.4) permits one to satisfy the
normalization condition of (2.20).

It should be remarked that the integrals that enter into (A.3)–(A.5) are difficult for
numerical evaluation because they are singular in view of |r̄ − r̄′| in the denominator. To
sidestep the difficulty, we used Gegenbauer’s addition theorem that enables one to express
exp(−α|r − r′|)/|r − r′| in terms of a series that contains modified Bessel functions and
Legendre polynomials [10] (if α = 0 this gives 1/|r − r′| of (A.5)). The angular dependence
of all functions in (A.3)–(A.5) was represented in terms of expansions in the Legendre
polynomials Pk(cos θ). To handle the series numerically they were cut off with account
taken of a desired accuracy. The appearing integrals over θ ′ lend themselves to analytical
calculation. As a result, it remains only to evaluate numerically integrals over r̄ ′.
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